有监督学习是从标签化训练数据集中推断出函数的机器学习任务。
训练数据由一组训练实例组成。在监督学习中,每一个例子都是一对由一个输入对象(通常是一个向量)和一个期望的输出值(也被称为监督信号)。有监督学习算法分析训练数据,并产生一个推断的功能,它可以用于映射新的例子。一个最佳的方案将允许该算法正确地在标签不可见的情况下确定类标签。
用已知某种或某些特性的样本作为训练集,以建立一个数学模型(如模式识别中的判别模型,人工神经网络法中的权重模型等),再用已建立的模型来预测未知样本,此种方法称为有监督学习。是最常见的机器学习方法。