将多维传感器产生的数据进行数据融合,能够产生比单一信息源更精确、更完全、更可靠的数据。数据融合分为预处理和数据融合两步。

    预处理

1)外部校正,去除外部地形、天气、气压、风速等外部噪声引起的对结果数据的影响,外部校正的目的主要在于去除外部随机因素对测量数据结果一致性的影响。

2)内部校正,去除由于各个传感器灵敏度、分辨率等自身参数差异引起的对结果数据的影响,内部校正的目的主要在于消除由不同传感器得到的数据差异。

    数据融合

根据不同的数据融合目的及数据融合所处层次,选择恰当的数据融合算法,将提取的特征或多维数据进行合成,得到比单一传感器更准确的表示或估计。


根据数据融合的操作对象级别从高到低分为:决策级融合、特征级融合及数据级融合。

1)数据级融合

操作对象是最前端的数据,对传感器采集到的原始数据进行处理,是最底层的融合。常用的数据级数据融合方法有:小波变换法、代数法、坎斯-托马斯变换(Kauth-Thomas Transformation,K-T)等。

2)特征级的数据融合

特征级数据融合面向监测对象特征的融合,从传感器采集到的原始数据中提取特征信息,用以反映事物的属性,以便进行综合分析和处理,是数据融合的中间环节。

特征级数据融合一般流程为:首先对数据进行预处理,然后对数据进行特征提取,再对特征提取后的数据进行特征级融合,最后对融合后的数据属性进行说明。

3)决策级数据融合

在底层两级数据融合的基础上,对数据进行特征提取、数据分类及逻辑运算,为管理者决策提供辅助。所需的决策是最高级的数据融合。该级别数据融合的特点是容错性、实时性好,当一个或几个传感器失效时,仍能做出决策。

决策级数据融合一般流程为:对数据进行预处理,然后对数据进行特征提取,再对特征进行属性说明,对属性进行融合,最后对融合属性进行说明。

通过不同的融合操作来对多传感器测量数据进行数据合并,减少存储数据量,降低数据分辨率,但同时也能呈现出融合后数据保留所需的全部信息。




作者:名字太长显得比较长
来源:CSDN